RAMMS::Extended
The RAMMS::Extended model was developed to simulate the motion of mixed flowing/powder avalanches in general three-dimensional terrain. Application of the existing, operational RAMMS model (Christen et al. 2010) is limited to the simulation of dense flowing avalanches without snow entrainment. The RAMMS::Extended model simulates both the avalanche core and the powder cloud and includes snow entrainment, and other processes, such as temperature and avalanche interaction with mountain forests. The model also includes impact pressure modules for both the avalanche core and powder cloud to better determine external avalanche loads on both wide (buildings) and slender (pylons) structures.
If you are a RAMMS::Avalanche user, and are interested in testing RAMMS::Extended, then get in contact with us!
Theory
In the extended model the flowing avalanche core ($\Phi$) consists of clumps and clods of snow (granules); the cloud consists of mixture of air and ice-dust ($\Pi$). The core is physically treated as a gravitationally driven, granular shear flow; the cloud is modelled as an inertial, turbulent suspension. Because the snow material in the core is non-suspendable and the ice-dust in the cloud is suspendable, two flow layers exist simultaneously, but with different flow densities ($\rho_\Phi,\rho_\Pi$) and speeds ($u_\Phi,u_\Pi$). The layers are formed by natural segregation because of the large difference in particle sizes – dust (< 1mm) and granules (> 1cm) – and therefore settlement speeds.
Random Energy
The Random Kinetic Energy (RKE) approach splits the shear work rate into the production of thermal and granular temperatures.
Entrainment
Avalanche interaction with the snowcover is physically treated as an elastic-plastic collision in which snow can be entrained (plastic collision).
Temperature
It has long been recognized that warm, moist snow behaves differently than cold, dry snow.
Powder Cloud
The avalanche cloud is mathematically treated as an inertial, turbulent suspension.
Downloads
RAMMS::Extended
Publications
EXTENDED Publication List
Meyrat G., Munch J., Cicoira A., McArdell B., Müller C.R., Frey H., Bartelt P. (2024) Simulating glacier lake outburst floods (GLOFs) with a two-phase/layer debris flow model considering fluid-solid flow transitions. Landslides. 21(479), 497. doi:10.1007/s10346-023-02157-w Institutional Repository DORA
Zhuang Y., Bartelt P., Xing A., Bilal M. (2024) Rock avalanche-induced air blasts: implications for landslide risk assessments. Geomorphology. 452, 109111 (11 pp.). doi:10.1016/j.geomorph.2024.109111 Institutional Repository DORA
Dasser G., Munch J., Bühler Y., Bartelt P., Manconi A. (2023) Applied space-borne remote sensing to identify mass movements and the exemplary modelling of potentially catastrophic failures in the Bhagirathi Area, India. In T. P. Kersten & N. Tilly (Eds.), Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.: Vol. 31. 43. wissenschaftlich-technische Jahrestagung der DGPF in München. Jahrestagung der DGPF. Photogrammetrie, Fernerkundung, Geoinformation. Stuttgart: Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF). 276-287. Institutional Repository DORA
Miller A.D., Redpath T.A.N., Sirguey P., Cox S.C., Bartelt P., Bogie D., … Bühler Y. (2023) Unprecedented winter rainfall initiates large snow avalanche and mass movement cycle in New Zealand’s Southern Alps/Kā Tiritiri o te Moana. Geophys. Res. Lett. 50(8), e2022GL102105 (11 pp.). doi:10.1029/2022GL102105 Institutional Repository DORA
Gorynina O., Bartelt P. (2023) Powder snow avalanche impact on hanging cables. Int. J. Impact Eng. 173, 104422 (11 pp.). doi:10.1016/j.ijimpeng.2022.104422 Institutional Repository DORA
Glaus J., Wikstrom Jones K., Bühler Y., Christen M., Ruttner-Jansen P., Gaume J., Bartelt P. (2023) RAMMS::EXTENDED – Sensitivity analysis of numerical fluidized powder avalanche simulation in three-dimensional terrain. In International snow science workshop proceedings 2023. Bozeman: Montana State University Library. 795-802. Institutional Repository DORA
Munch J., Bartelt P., Christen M. (2023) Multi-component avalanches for rock- and ice-falls to potential debris flow transition modelling. In M. Pirulli, A. Leonardi, & F. Vagnon (Eds.), E3S web of conferences: Vol. 415. 8th international conference on debris flow hazard mitigation (DFHM8). Les Ulis Cedex A: EDP Sciences. 01017 (4 pp.). doi:10.1051/e3sconf/202341501017 Institutional Repository DORA
Zhuang Y., Piazza N., Xing A., Christen M., Bebi P., Bottero A., … Bartelt P. (2023) Tree blow-down by snow avalanche air-blasts: dynamic magnification effects and turbulence. Geophys. Res. Lett. 50(21), e2023GL105334 (12 pp.). doi:10.1029/2023GL105334 Institutional Repository DORA
Ivanova, K.; Caviezel, A.; Bühler, Y.; Bartelt, P., 2022: Numerical modelling of turbulent geophysical flows using a hyperbolic shear shallow water model: application to powder snow avalanches. Computers and Fluids, 233: 105211 (9 pp.). doi: 10.1016/j.compfluid.2021.105211
Caviezel, A.; Margreth, S.; Ivanova, K.; Sovilla, B.; Bartelt, P., 2021: Powder snow impact of tall vibrating structures. In: Papadrakakis, M.; Fragiadakis, M. (eds), 2021: Compdyn 2021 proceedings. COMPDYN 2021. 8th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, Athens, Greece. 19112 (13 pp.).
Frigo, B.; Bartelt, P.; Chiaia, B.; Chiambretti, I.; Maggioni, M., 2021: A reverse dynamical investigation of the catastrophic wood-snow avalanche of 18 January 2017 at Rigopiano, Gran Sasso National Park, Italy. International Journal of Disaster Risk Science, 12: 40-55. doi: 10.1007/s13753-020-00306-6
Miller, A.; Sirguey, P.; Morris, S.; Bartelt, P.; Cullen, N.; Buhler, Y., 2021: Avalanche modelling on the Milfoard Road. New Zealand Avalanche Dispatch, 43-47.
Brožová, N.; Fischer, J.; Bühler, Y.; Bartelt, P.; Bebi, P., 2020: Determining forest parameters for avalanche simulation using remote sensing data. Cold Regions Science and Technology, 172: 102976 (11 pp.). doi: 10.1016/j.coldregions.2019.102976
Bartelt, P.; Buser, O.; Christen, M.; Caviezel, A., 2019: Dynamic magnification factors for snow avalanche impact (with pile-up) on walls and pylons. In: Papadrakakis, M.; Fragiadakis, M. (eds), 2019: COMPDYN 2019. 7th international conference on computational methods in structural dynamics and earthquake engineering. Proceedings. COMPDYN 2019. 7th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, Crete, Greece. 4376-4385.
Kääb, A.; Leinss, S.; Gilbert, A.; Bühler, Y.; Gascoin, S.; Evans, S.G.; Bartelt, P.; Berthier, E.; Brun, F.; Chao, W.; Farinotti, D.; Gimbert, F.; Guo, W.; Huggel, C.; Kargel, J.S.; Leonard, G.J.; Tian, L.; Treichler, D.; Yao, T., 2018: Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geoscience, 11, 2: 114-120. doi: 10.1038/s41561-017-0039-7
Vera Valero, C.; Wever, N.; Christen, M.; Bartelt, P., 2018: Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout. Natural Hazards and Earth System Science, 18, 3: 869-887. doi: 10.5194/nhess-18-869-2018
Bühler, Y.; Von Rickenbach, D.; Stoffel, A.; Margreth, S.; Stoffel, L.; Christen, M., 2018: Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping. Natural Hazards and Earth System Science, 18, 12: 3235-3251. doi: 10.5194/nhess-18-3235-2018
Bartelt, P.; Christen, M.; Bühler, Y.; Buser, O., 2018: Thermomechanical modelling of rock avalanches with debris, ice and snow entrainment. In: Cardoso, A.S.; Borges, J.L.; Costa, P.A.; Gomes, A.T.; Marques, J.C.; Vieira, C.S. (eds), 2018: Numerical methods in geotechnical engineering IX. 9th European conference on numerical methods in geotechnical engineering (NUMGE 2018), Porto. 1047-1054.
Wikstrom Jones, K.; Loso, M.G.; Bartelt, P., 2018: Modeled mass and temperature effects of entrained snow on the lubricated flow regime and implications for predicting avalanche runout distance. In: 2018: International snow science workshop proceedings 2018. International snow science workshop, ISSW 2018, Innsbruck. 84-88.
Schmidtner, K.; Bartelt, P.; Fischer, J.; Sailer, R.; Granig, M.; Sampl, P.; Fellin, W.; Stoffel, L.; Christen, M.; Bühler, Y., 2018: Comparsion of powder snow avalanche simulation models (RAMMS and SamosAT) based on reference events in Switzerland. In: 2018: International snow science workshop proceedings 2018. International snow science workshop, ISSW 2018, Innsbruck. 740-745.
Riba Porras, S.; García-Sellés, C.; Bartelt, P.; Stoffel, L., 2018: Analysis of one avalanche zone in the Eastern Pyrenees (Val d’Aran) using historical analysis, snow-climate data and mixed flowing/powder avalanche modelling. In: 2018: International snow science workshop proceedings 2018. International snow science workshop, ISSW 2018, Innsbruck. 561-565.
Frigo, B.; Chiaia, B.; Chiambretti, I.; Bartelt, P.; Maggioni, M.; Freppaz, M., 2018: The January 18th 2017 Rigopiano disaster in Italy – analysis of the avalanche dynamics. In: 2018: International snow science workshop proceedings 2018. International snow science workshop, ISSW 2018, Innsbruck. 6-10.
Bartelt, P.; Christen, M.; Bühler, Y.; Caviezel, A.; Buser, O., 2018: Snow entrainment: avalanche interaction with an erodible substrate. In: 2018: International snow science workshop proceedings 2018. International snow science workshop, ISSW 2018, Innsbruck. 716-720.
Bartelt, P.; Buser, O., 2018: Avalanche dynamics by Newton. Reply to comments on avalanche flow models based on the concept of random kinetic energy. Journal of Glaciology, 64, 243: 165-170. doi: 10.1017/jog.2018.1
Bartelt, P.; Bebi, P.; Feistl, T.; Buser, O.; Caviezel, A., 2018: Dynamic magnification factors for tree blow-down by powder snow avalanche air blasts. Natural Hazards and Earth System Science, 18, 3: 759-764. doi: 10.5194/nhess-18-759-2018
Bartelt, P.; Buser, O., 2016: Reply to “Discussion of “The relation between dilatancy, effective stress and dispersive pressure in granular avalanches” by P. Bartelt and O. Buser (DOI: 10.1007/s11440-016-0463-7)” by Richard Iverson and David L. George (DOI: 10.1007/s11440-016-0502-4). Acta Geotechnica, 11, 6: 1469-1473. doi: 10.1007/s11440-016-0503-3
Bartelt, P.; Buser, O., 2016: The relation between dilatancy, effective stress and dispersive pressure in granular avalanches. Acta Geotechnica, 11, 3: 549-557. doi: 10.1007/s11440-016-0463-7
Dreier, L.; Bühler, Y.; Ginzler, C.; Bartelt, P., 2016: Comparison of simulated powder snow avalanches with photogrammetric measurements. Annals of Glaciology, 57, 71: 371-381. doi: 10.3189/2016AoG71A532
Bartelt, P.; Buser, O.; Vera Valero, C.; Bühler, Y., 2016: Configurational energy and the formation of mixed flowing/powder snow and ice avalanches. Annals of Glaciology, 57, 71: 179-188. doi: 10.3189/2016AoG71A464
Stoffel, L.; Margreth, S.; Schaer, M.; Christen, M.; Bühler, Y.; Bartelt, P., 2016: Powder snow avalanche engineering: new methods to calculate air-blast pressures for hazard mapping. In: Koboltschnig, G. (eds), 2016: 13th congress INTERPRAEVENT 2016. 30 May to 2 June 2016. Lucerne, Switzerland. Conference proceedings “Living with natural risks”. 13th congress INTERPRAEVENT 2016, Lucerne, Switzerland, May 30-June 2, 2016. 416-425.
Feistl, T.; Fischer, A.; Bebi, P.; Bartelt, P., 2016: Evaluation of protection measures against avalanches in forested terrain. In: 2016: International snow science workshop proceedings 2016. International snow science workshop, ISSW 2016, Breckenridge, CO, USA, October 2-7, 2016. 561-568.
Wikstrom Jones, K.; Bartelt, P.; Loso, M., 2016: Modeled mass and temperature effects of released and entrained snow on the lubricated wet flow regime of avalanches at Bird Hill, southcentral Alaska. In: 2016: International snow science workshop proceedings 2016. International snow science workshop, ISSW 2016, Breckenridge, CO, USA, October 2-7, 2016. 501-508.
Vera Valero, C.; Wever, N.; Bartelt, P., 2016: Coupling operational snowcover simulations with avalanche dynamics calculations to assess avalanche danger in high altitude mining operations. In: 2016: International snow science workshop proceedings 2016. International snow science workshop, ISSW 2016, Breckenridge, CO, USA, October 2-7, 2016. 159-164.
Vera Valero, C.; Wever, N.; Bühler, Y.; Stoffel, L.; Margreth, S.; Bartelt, P., 2016: Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes. Natural Hazards and Earth System Science, 16, 11: 2303-2323. doi: 10.5194/nhess-16-2303-2016
Bartelt, P.; Vera Valero, C.; Feistl, T.; Christen, M.; Bühler, Y.; Buser, O., 2015: Modelling cohesion in snow avalanche flow. Journal of Glaciology, 61, 229: 837-850. doi: 10.3189/2015JoG14J126
Buser, O.; Bartelt, P., 2015: An energy-based method to calculate streamwise density variations in snow avalanches. Journal of Glaciology, 61, 227: 563-575. doi: 10.3189/2015JoG14J054
Vera Valero, C.; Wikstroem Jones, K.; Bühler, Y.; Bartelt, P., 2015: Release temperature, snow-cover entrainment and the thermal flow regime of snow avalanches. Journal of Glaciology, 61, 225: 173-184. doi: 10.3189/2015JoG14J117
Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P., 2015: Forest damage and snow avalanche flow regime. Natural Hazards and Earth System Science, 15, 6: 1275-1288. doi: 10.5194/nhess-15-1275-2015
Feistl, T.; Bebi, P.; Teich, M.; Bühler, Y.; Christen, M.; Thuro, K.; Bartelt, P., 2014: Observations and modeling of the braking effect of forests on small and medium avalanches. Journal of Glaciology, 60, 219: 124-138. doi: 10.3189/2014JoG13J055
Feistl, T.; Bebi, P.; Dreier, L.; Hanewinkel, M.; Bartelt, P., 2014: Quantification of basal friction for technical and silvicultural glide-snow avalanche mitigation measures. Natural Hazards and Earth System Science, 14, 11: 2921-2931. doi: 10.5194/nhess-14-2921-2014
Teich, M.; Fischer, J.-T.; Feistl, T.; Bebi, P.; Christen, M.; Grêt-Regamey, A., 2014: Computational snow avalanche simulation in forested terrain. Natural Hazards and Earth System Science, 14, 8: 2233-2248. doi: 10.5194/nhess-14-2233-2014