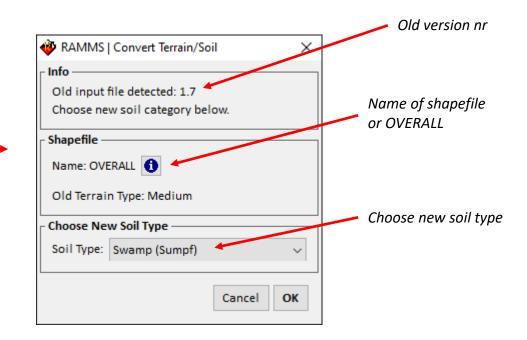


1

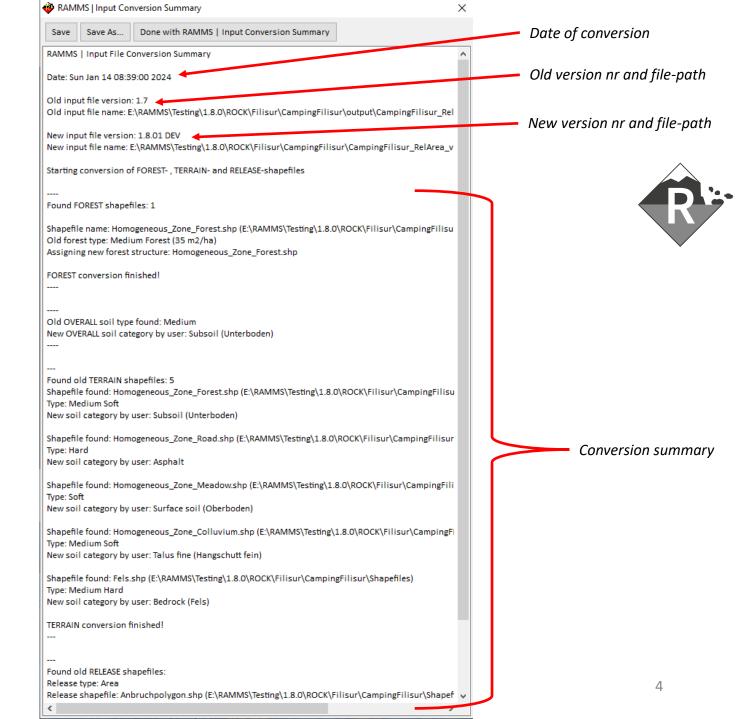
RAMMS::Rockfall 1.8.26

New features of version 1.8.26

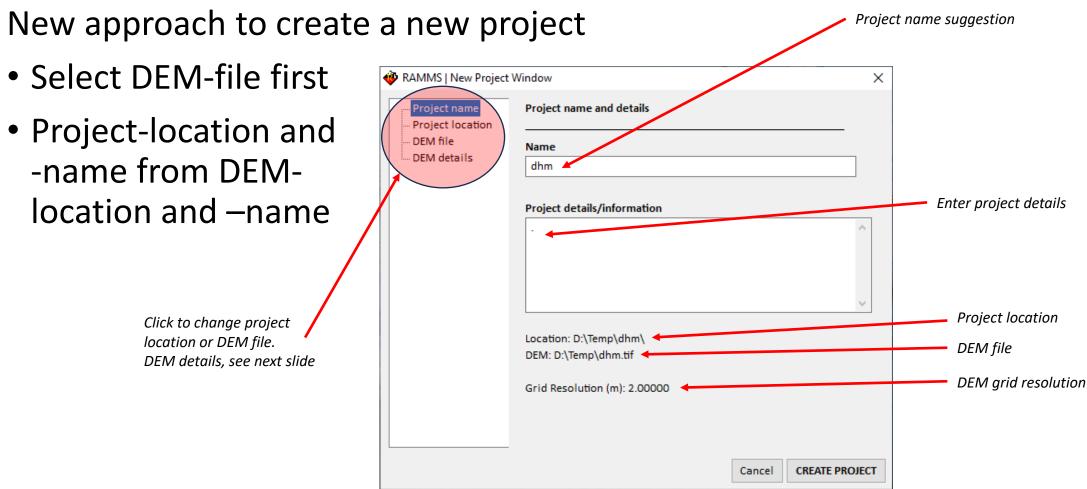
Marc Christen, RAMMS AG August 2024


Table of contents

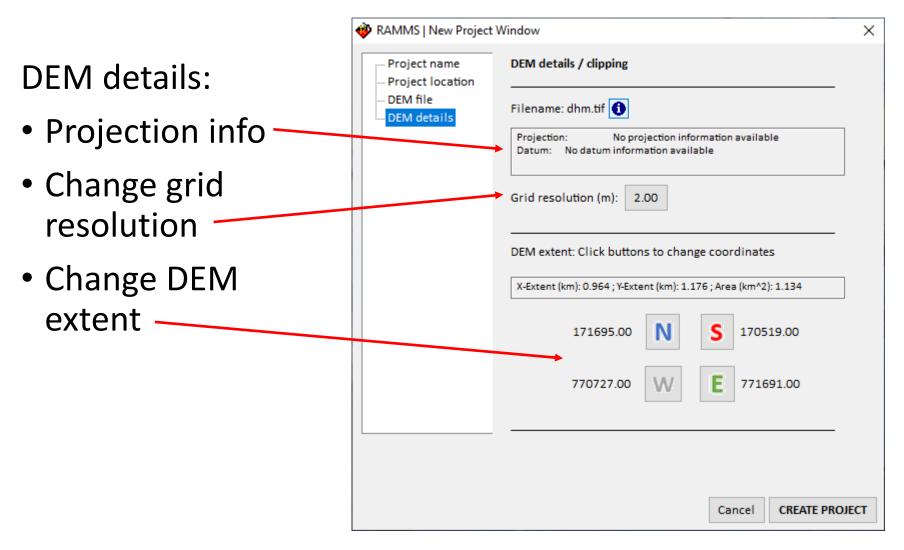
- 3 Open old projects
- 5 Create new project
- 7 Reduced output files
- 8 Running a simulation
- 9 Forest
- 20 Artificial obstacles Nets, Dams, Galleries
- 21 Galleries and Dams
- 25 Gallery Analysis
- 33 Rockfall Net


Open old projects

- RAMMS will detect «old» projects
- FOREST and RELEASE parameters are converted automatically
- For every TERRAIN-shapefile (and OVERALL terrain) you are asked to assign a new SOIL category
- If you click «cancel», NO soil category is assigned to the shapefile


Open old projects

- At the end of the conversion, a «conversion summary» is shown
- A new input file is saved in the *project* directory (not in the «old» scenario directory)

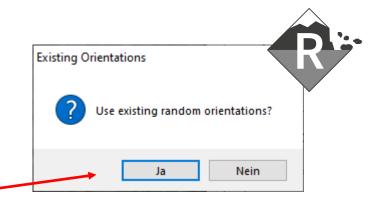


Create new project

Create new project

Reduced Output Files

- Check this checkbox to use the «reduced output mode»
- If checked, the following output parameters are saved:
 - Kin. Energy
 - Jump Height
 - Velocity
 - Scar Depth
- This feature will speed up the simulations, and also save disk space.


eneral		nulation				×
eneral	Terrain	Forest I	Dam/Net	Rock	Release	
		ION PARAM	ETERS			
Test	RIO Name					
Time In	tegration					
Dump	Step (s):	0.0200				
Stop Cr	iterion —					
minKi	nEnergy =	. The thresh 0.5 x RockN	lass x (Ve		VelStop =	
_	op at First		CIIC		200.0	
St		Contact				
DEM &	op at First Domain Si	Contact				
DEM &	op at First Domain S I Elevatior	: Contact				
DEM & Digita	op at First Domain Si I Elevatior File: Trii	: Contact tuff	ormation			
DEM & Digita DEM	op at First Domain Si I Elevation File: Trin	tuff	ormation			X
DEM & Digita DEM Use ca	op at First Domain Si I Elevation File: Trin	tuff	ormation			

7

Running a simulation

New features when running a new simulation:

- Random orientations are saved (file: .random.sav in scenario-directory)
- Can be used for other simulations (click Yes and choose .random.sav-file from another scenario)
- Information window about «suggested nr of CPU's» and scenario summary is shown.
- Choose nr of CPU's with care, because can not be changed after starting a simulation! If you choose a nr from the dropdown menu, the simulation will start automatically!
- All simulation files are saved in separate folders, e.g. all trajectories in "traj_files"

🕸 RAMMS Cho	ose CPU			Х		
Starting Simulat	on - CPU —					
Total nr of simulations: 120						
A - Nr of releas	e positions:	3				
B - Nr of releas	e orientatio	ns: 20				
C - Nr of rocks	2					
Nr of available	Nr of available CPUs: 16					
Choose nr of C	PUs:					
You can use su	ggested nun	bers from	the dropdow	n,		
or input your o	wn number	in the righ	t field below.			
Suggested:	V Manu	ially:	0			
2						
4						
5						
10						

Forest – old forest approach

• Hard to calibrate

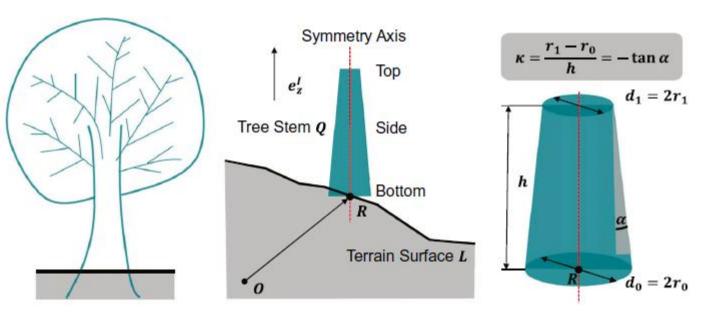
Rocks are not stopping, just slowing down

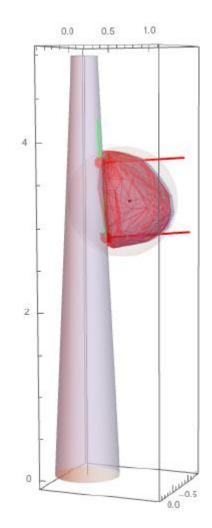
Forest drag is given by (Figure 3.9):

$$F_{df} = -C_f v_s \qquad C_f = \begin{cases} \theta_f & \text{if } Z \le Z_h \\ 0 & Z > Z_h \end{cases}$$
(3.10)

The idea behind forest drag is that a resisting force acts on the rock's center of mass when it is located below the drag layer height Z_h . This force is linearly proportional to the rock velocity v_s . The forest is parameterized by the effective height of the vegetation layer Z_h as well as the drag coefficient θ_f . The effective height Z_h roughly corresponds to the height of the forest but in some cases, for example old forests, the drag force in the tree crowns might be negligible and therefore the effective height could be smaller than the real tree height. The model does not account for a Z-dependency in forest structure as it assumes a homogeneous layer with mean drag properties. Typical values for Z_h are between 5 m and 30 m (default value is 30m); typical values for θ_f range between 100 kg/s and 1'000 kg/s. Three different forest types are implemented in RAMMS::ROCKFALL for now:

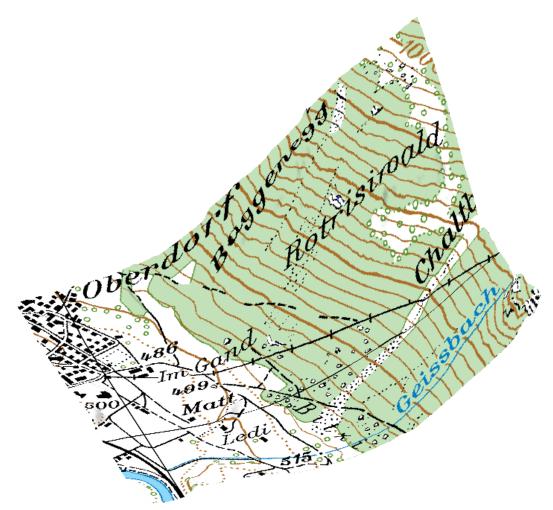
- Open Forest \rightarrow 20 m²/ha \rightarrow forest drag = 250 kg/s
- Medium Forest \rightarrow 35 m²/ha \rightarrow forest drag = 500 kg/s
- Dense Forest → 50 m²/ha → forest drag = 750 kg/s


Figure 3.9: Forest drag F_{df} is implemented to act on the center of gravity of the rock-body at height Z.

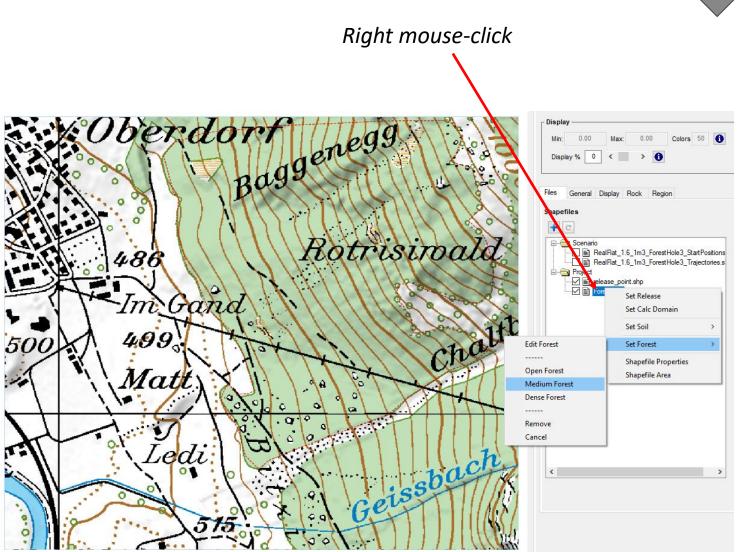
Forest – **NEW** forest approach

- Tree modelled as **truncated cone**, random distribution
- Rock-tree interaction is considered as hard contact
- Energy dissipation due to uprooting / swaying of tree stem/crown is not incorporated

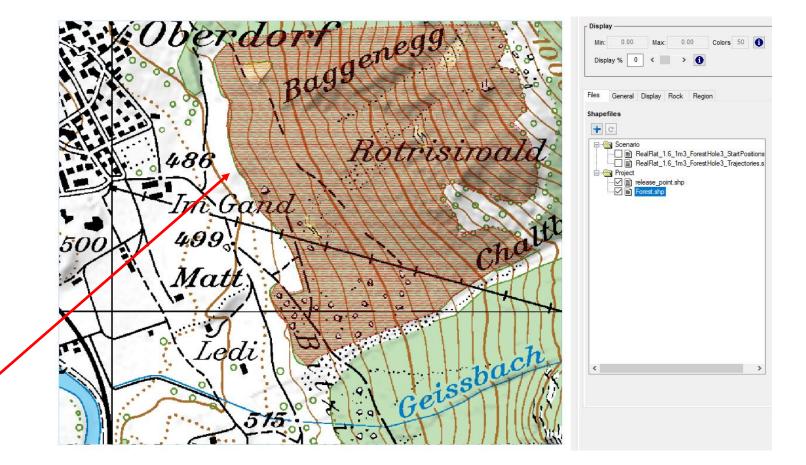


R

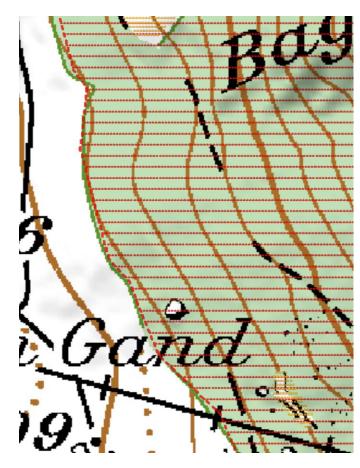
Forest - Example

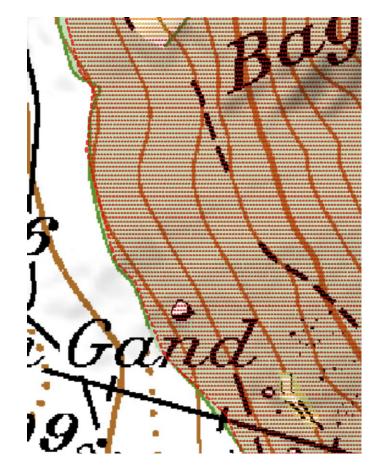

- Draw or import forest-shapefiles
- Forest types
 - Open Forest 200 Trees/ha
 - Medium Forest 400 Trees/ha
 - Dense Forest 600 Trees/ha
- Assign forest for single polygons or whole shapefile
- Default forest visualization is to fill the shapefile with a pattern

Forest - Example

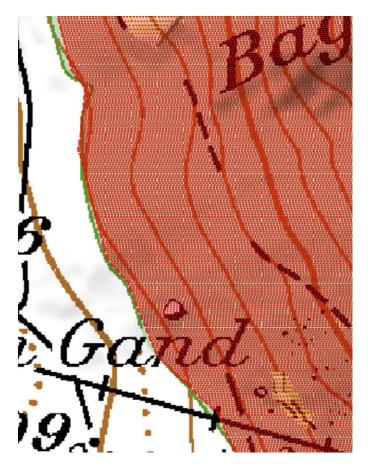

- Draw or import forest-shapefiles
- Forest types
 - Open Forest 200 Trees/ha
 - Medium Forest 400 Trees/ha
 - Dense Forest 600 Trees/ha
- Assign forest for single polygons or whole shapefile

Forest - Example

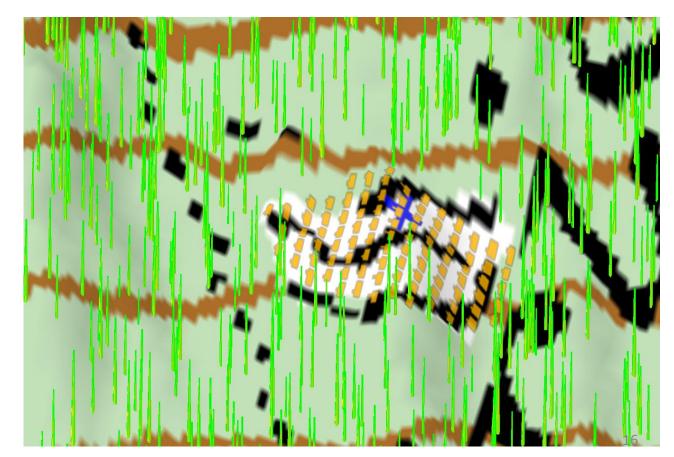

- Draw or import forest-shapefiles
- Forest types
 - Open Forest 200 Trees/ha
 - Medium Forest 400 Trees/ha
 - Dense Forest 600 Trees/ha
- Assign forest for single polygons or whole shapefile
- Default forest visualization: fill the shapefile with a pattern (spacing of pattern lines depends on forest type)



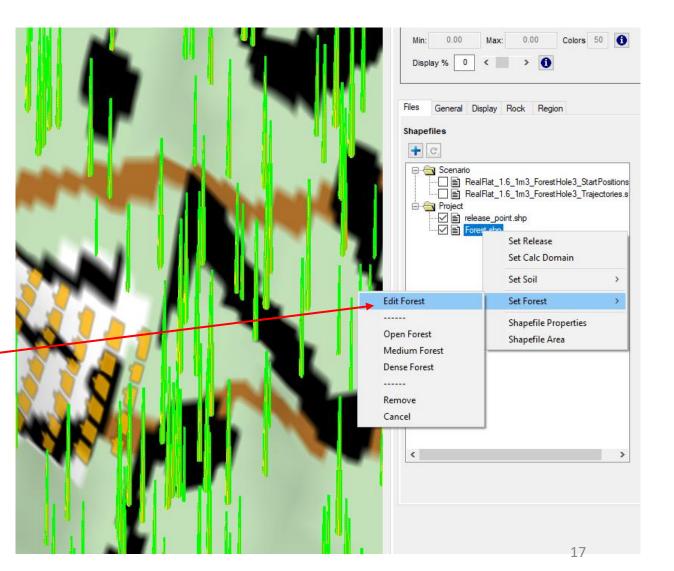
Forest - Example

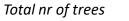

Open Forest

Medium Forest


Dense Forest

Forest – Single Trees Visualization

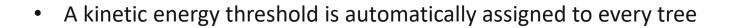

- It's possible to visualize the single trees: Menu "Show → Show Trees" (this will take a while because the single tree objects have to be created! ~ 10s / 10'000 trees)
- In Output-Mode, only trees within a rectangular region around the trajectories are visualized!



Forest – Tree Distribution

- Trees are randomly distributed within a polygon region. Choose nr. of trees / ha.
- But what about tree diameters (DBH diameter at breast height) and tree height?
 - Mean DBH and standard deviation can be set, and then a normal (Gaussian) distribution is calculated.
 - Edit a forest -

within forest polygon



Forest – Tree Distribution

- Trees are randomly distributed within a polygon region. Choose nr. of trees / ha.
- But what about tree diameters (DBH diameter at breast height) and tree height?
 - Mean DBH and standard deviation can be set, and then a normal (Gaussian)
 distribution is calculated.
 - Edit a forest
 - Tree height (m) = DBH (cm)^{0.8}
 (empirical relation by L. Dorren)

	RAMMS Forest Parameters		Min: 0.00 I	Max: 0.00 Colors 50 0
	Shapefile: Forest.shp			
	Forest		Files General Disp	lay Rock Region
P	Forest density		Shapefiles	
<u> </u>	Proj. Area (m2): 267420.16 Trees: 10696		+ C	
	No. Trees / ha: 400 (1 ha = 10000m2)		RealFl	at_1.6_1m3_ForestHole3_StartPositions at_1.6_1m3_ForestHole3_Trajectories.s
	DBH distribution (cm)		Project	e_point.shp
/	Mean: 28.00 Sigma: 7.00 🗽 🧕		Forest	Set Release Set Calc Domain
	Tree Height (m)			Set Soil >
	Min/Max: 2.16/24.19 Mean/Std: 14.30/2.90	Edit	t Forest	Set Forest >
K			en Forest	Shapefile Properties Shapefile Area
N	600 500		dium Forest nse Forest	
Y				
Ĺ.,	92 400	Ren Can	nove	
	<u> 2</u> 200 - 1 -			
N			<	>
	0 10 20 30 40 50			
	DBH (cm)			
	Cancel OK			

Forest – Tree Destruction

 $E_{diss_max} = m x 38.7 x DBH (cm)^{2.31} (J)$ (L. Dorren)

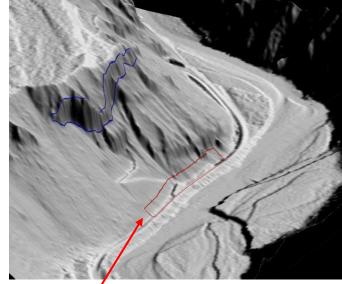
The factor m = 2 is used to take energy-loss during tree impacts and deflections into account

 $Rock_{Ekin} < (0.5 \times E_{diss max})$ \rightarrow Normal hit, rock is deflected, tree ~ok

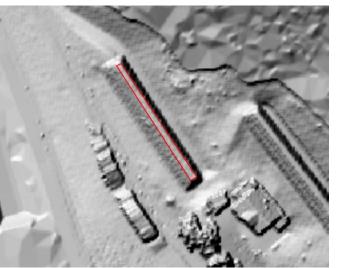
 $(0.5 \times E_{diss_max}) < Rock_{Ekin} < E_{diss_max}$ \rightarrow Severe hit, rock is deflected, tree probably destroyed $Rock_{Ekin} > E_{diss_max}$ \rightarrow Kill hit, rock does NOT see tree, tree is killed

Artificial obstacles – Nets, Dams, Galleries

- Artificial obstacles are always defined as a point cloud and modeled as a convex hull (Point Cloud, Convex Hull).
- The maximum kinetic energy that an obstacle can absorb when the stone impacts is limited by an upper energy limit. For simplicity, it is assumed that an obstacle whose limit value is exceeded by the stone cannot have any influence on it. This means that collisions with these obstacles are registered during the simulation, but they have no influence on the stone trajectory.


Examples of artificial obstacles:

- Galleries
- Rockfall net
- Dam



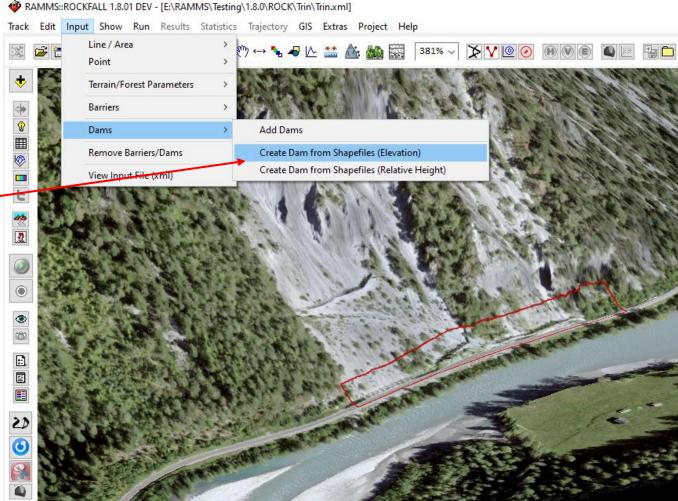
 Draw one (1) outline shapefile for the gallery, or two (2) shapefiles for a dam (one shapefile for the dam foot, and one for the dam crest)



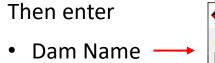
Gallery outline

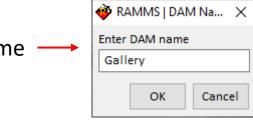
Dam crest shapefile

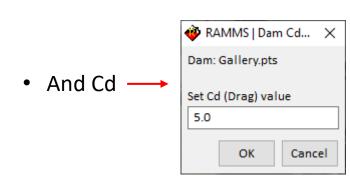
Dam foot shapefile



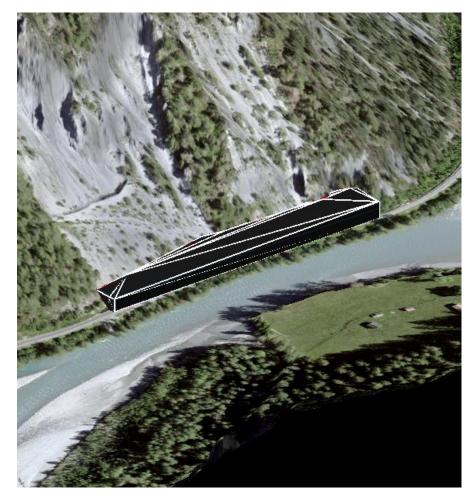
- Use one of the two functions to either draw a dam/gallery with
 a constant altitude
 - or a relative height
- Choose dam foot and dam crest shapefiles (use twice the same outline shapefile for a gallery)
- Then enter dam <u>elevation</u> or <u>relative</u> height


•				
🕸 RAMMS DAM Crest - Relative Hei 🗙				
Enter RELATIVE height	of dam cre	st (e.g. 8.0)		
5.0				
	ОК	Cancel		
	UK	cancer		

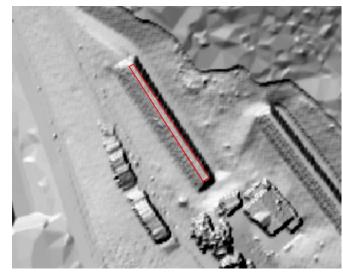

		ОК	Cancel
	Enter ELEVATION height of d	am crest (e	g. 1480.0)
	Enter ELEVATION beight of d	am croct (a	a 1490.0)
_	🏘 RAMMS DAM Crest - El	evation Heig	ght $ imes$

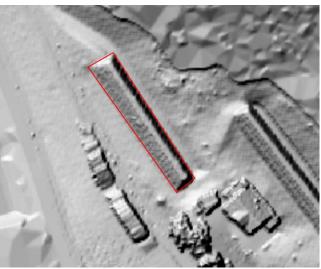


Galleries and Dams



Energy absorption capacity (in kJ) —

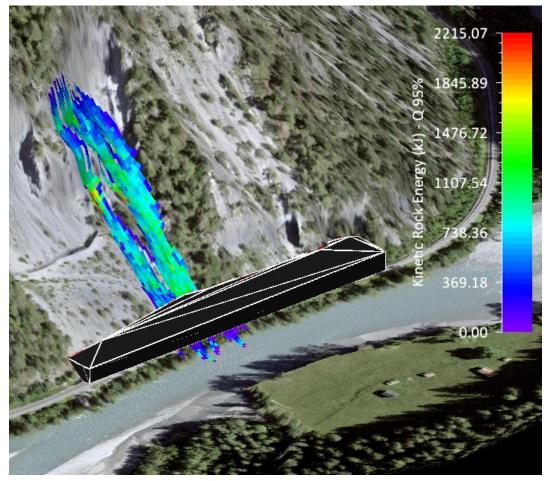

🕸 RAMMS Dam Energy Absorption C 🗙					
Dam: Gallery.pts					
Set energy absorption capacity (in kJ) of dam					
5000.0					
	ОК	Cancel			



• For a dam, the result would look something like this:

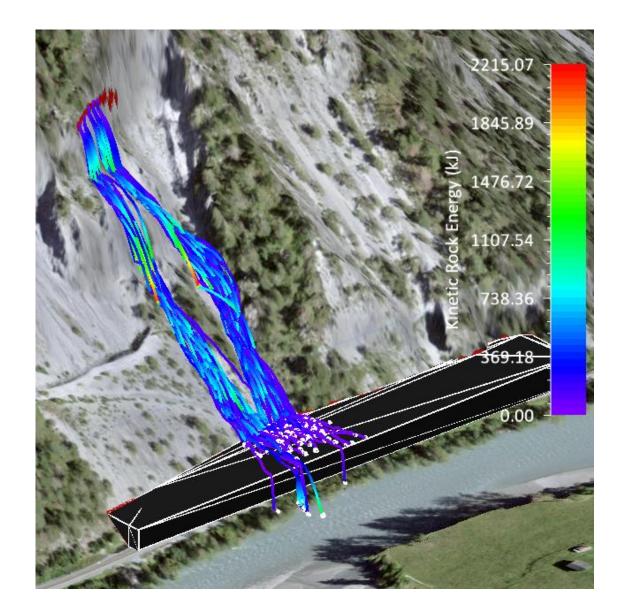
Dam crest shapefile

Dam foot shapefile



Gallery Analysis

Analysing gallery results


 In Statistic-Mode, results look strange at first glance, but that's because results are projected onto the terrain, and not onto the gallery.

- In *Trajectory-Mode*, the results look good!
- To analyse the results further, click

«Extras \rightarrow Analyse Gallery Impacts»

Gallery Analysis

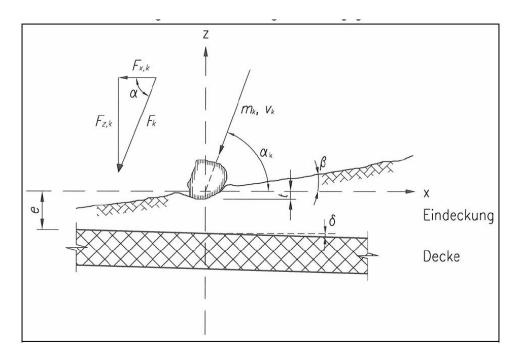
- Enter *Gallery Impact Parameters* (click *Save* and *Done*)
- RAMMS then analyses the impact values and calculates:
 - Impact angle (on flat plane)
 - Velocity before impact
 - Velocity after impact
 - Kin. Energy before impact
 - Kin. Energy after impact
 - Force Richtlinie
 - Normal Force Richtlinie
 - Tangential Force Richtlinie
 - Scar-Depth Richtlinie

Save Save As	Done	with RAMMS Gallery Impact Parameters	
CoverThick:	2.00	Layer thickness of the covering in [m]	
ME-modulus:	20000.0	Static compression modulus of material [kN/m2]	
FrictAngle:	32.00	Friction angle of the covering material [°]	
DensityRock:	2600.0	Density of rock [kg/m3]	

Richtlinie Ausgabe 2008 V2.03 Einwirkungen infolge Steinschlags auf Schutzgalerien

ASTRA

Gemäss Richtlinie können wir


- Eindringtiefe **t** [m] sowie
- Kraft am Aufprallort **F**_k [kN]

berechnen mithilfe

- Masse des Steinblocks m_k [t]
- Radius der Ersatzkugel r [m]
- Aufprallgeschwindigkeit v_k [m/s
- Schichtstärke der Eindeckung e [m]
- statischen ME -Moduls des Eindeckungsmaterials ME_k [kN/m2]
- Reibungswinkels des Eindeckungsmaterials φ_k [°]

Simulation Simulation Simulation Eingabe Eingabe

Eingabe

Die Kraft F_k und die Eindringtiefe *t* werden wie folgt ermittelt:

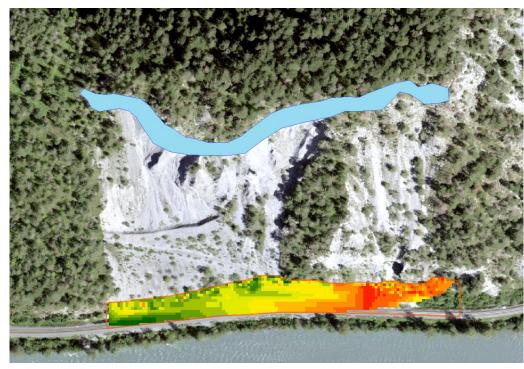
$$\overline{F}_{k} = 2,8 \cdot e^{-0,5} \cdot r^{0,7} \cdot M_{E,k}^{0,4} \cdot \tan \varphi_{k} \cdot \left(\frac{m_{k} \cdot v_{k}^{2}}{2}\right)^{0,4}$$
$$= \left(\frac{m_{k} \cdot v_{k}^{2}}{F_{k}}\right)$$

RAMMS | Barrier Impact Parameters

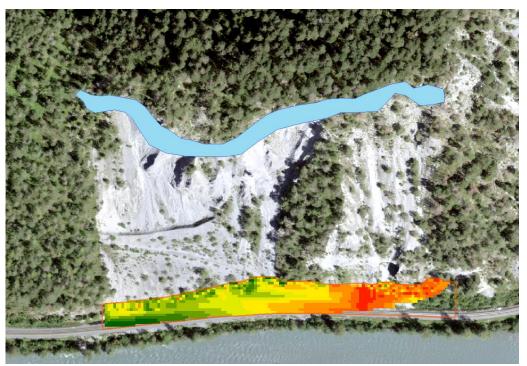
Save Save As	Done v	Done with RAMMS Barrier Impact Parameters			
CoverThick:	2.00	Layer thickness of the covering in [m]			
ME-modulus:	20000.0	Static compression modulus of material [kN/m2]			
FrictAngle:	32.00	Friction angle of the covering material [°]			
DensityRock:	2600.0	Density of rock [kg/m3]			

Gallery Analysis

- Only the FIRST impact of each rock trajectory on the gallery is used for the analysis (assumption: subsequent impacts are less severe)
- RAMMS creates point shapefile with all impacts with key attributes (impact force, angle, speed, etc.)
- Additionally, RAMMS creates two raster files (GeoTIFF, linear interpolation):
 - Distribution of Impact-Force F_k (by Richtlinie) over gallery-area
 - Distribution of scar-depth (by Richtlinie) over gallery-area



	FID	Shape	ld	t (s)	Angle (°)	Vres pre (Ekin pre (F_R (kN)	Pen_R (m)
	0	Point	0	12.433	57.075	31.634	2976.6	6325.5	0.855
	1	Point	1	12.489	58.927	28.429	2458.6	5564.6	0.785
	2	Point	2	13.501	61.955	23.004	1602	4316	0.6627
	3	Point	3	13.977	64.94	25.653	1950.5	4919	0.7231
	4	Point	4	12.567	31.467	19.748	1498.3	3593.7	0.5865
	5	Point	5	13.191	60.229	29.69	2630	5861.9	0.8127
	6	Point	6	13.447	59.857	25.546	1986.7	4894.3	0.7206
	7	Point	7	12.087	51.942	29.848	2715.3	5899.4	0.8162
	8	Point	8	13.649	52.357	26.963	2291.8	5221.9	0.7524
	9	Point	9	11.497	52.067	29.999	2774.5	5935.4	0.8195
	10	Point	10	17.581	52.846	13.746	562	2325.4	0.4389
	11	Point	11	13.217	27.506	19.217	1254.7	3476.2	0.5738
	12	Point	12	12.675	54.626	31.686	2980.3	6334.7	0.8561
	13	Point	13	13.189	51.073	27.671	2287.5	5384.2	0.7681
	14	Point	14	13.227	54.642	27.447	2179.8	5332.1	0.7632
	15	Point	15	14.725	59.233	23.525	1555.6	4431.4	0.6746
	16	Point	16	13.437	60.269	27.938	2291.7	5446.7	0.7741
	17	Point	17	14.117	55.401	29.369	2534.6	5783.2	0.8056
	18	Point	18	14.193	56.917	25.728	1894.7	4933.7	0.7247
	19	Point	19	18.893	25.382	15.885	769.4	2766.1	0.4927
	20	Point	20	11.835	56.344	29.58	2618.3	5835.9	0.8103
	21	Point	21	12.781	55.906	26.022	2036.9	5004	0.7314
	22	Point	22	11.049	32.828	22.17	1718.8	4128.9	0.6434
	23	Point	23	13.387	56.268	27.912	2515.8	5443.4	0.7736
	24	Point	24	13.057	56.956	27.197	2221.2	5276.5	0.7577
	25	Point	25	12.669	22.757	14.64	769.02	2509.4	0.4616
	26	Point	26	11.615	57.744	26.785	2217.9	5180.6	0.7485
	27	Point	27	12.305	62.17	30.303	2631.1	6007.6	0.8261
Ī	28	Point	28	11.705	55.392	29.982	2704.9	5931.2	0.8191
	29	Point	29	14.711	62.707	26.636	2025.9	5143.6	0.7451
Ī	30	Point	30	14.017	26.048	15.191	743.7	2621.9	0.4754
	31	Point	31	11.971	56.328	29.622	2667.8	5842.9	0.8112
	32	Point	32	11.383	60.678	28.705	2545.9	5626.7	0.791
	33	Point	33	14.865	61.196	23.525	1574.2	4431.4	0.6746
	34	Point	34	17.669	39.397	12.502	514.7	2075.3	0.4068
	35	Point	35	14.315	42.145	11.106	364.88	1800.3	0.37


Raster - Results

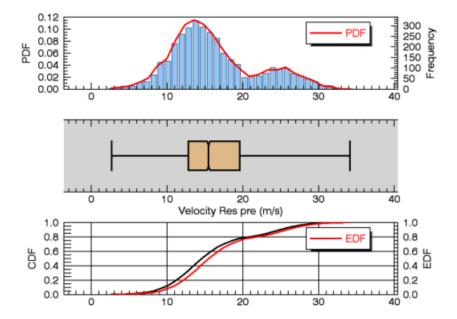
Impact-Force F_k (kN)

350.4264221 - 545.3913999 545.3914 - 697.7077888 697.7077889 - 819.5608999 819.5609 - 947.5066666 947.5066667 - 1'087.637744 1'087.637745 - 1'233.861478 1'233.861479 - 1'386.177867 1'386.177868 - 1'538.494256 1'538.494257 - 1'702.995956 1'702.995957 - 1'904.053589 Release area

Gallerie-Outline

Scar-Depth (m)

0.20599699 - 0.280609051
 0.280609051 - 0.33390338
 0.33390338 - 0.372985888
 0.372985888 - 0.408515441
 0.408515441 - 0.445821471
 0.408515441 - 0.445821471
 0.445821471 - 0.483127501
 0.445821471 - 0.523986487
 0.523986487 - 0.56662195
 0.56662195 - 0.607480936
 0.607480936 - 0.658998787


Create Gallery-PDF-Report to view these statistics-plots

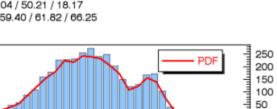
Impact - Statistics

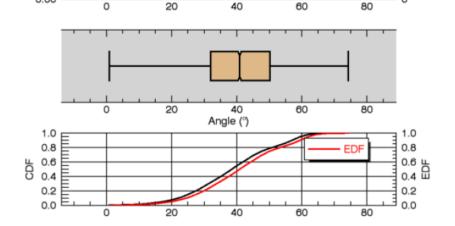
Velocity Res pre (m/s) - Statistics Summary:

Angle (°) - Statistics Summary:

Parameter: Angle (°)

0.10


0.08


0.04

0.02

0.00

PDF 0.06 Min / Max: 0.85 / 74.28 Mean / Median: 41.09 / 40.92 Std Dev: 13.00 Q1 / Q3 / IQR: 32.04 / 50.21 / 18.17 Q90 / Q95 / Q99: 59.40 / 61.82 / 66.25 Nr of data values: 3547 Histogram bin size: 2.37

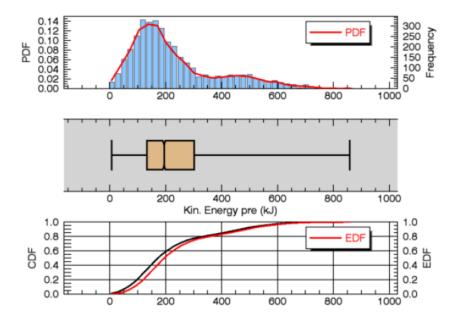
Š

Janba,

ιĥ.

0

Impact - Statistics

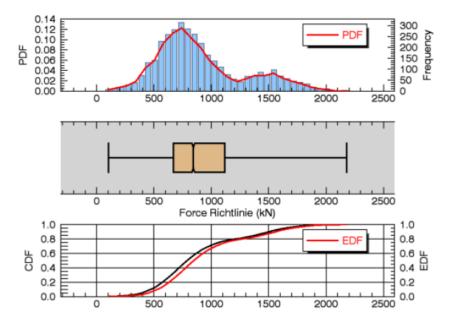

Kin. Energy pre (kJ) - Statistics Summary:

Nr of data values: 3547

Histogram bin size: 21.86

Parameter: Kin. Energy pre (kJ)

Min / Max: 6.31 / 858.80 Mean / Median: 240.74 / 194.38 Std Dev: 153.94 Q1 / Q3 / IQR: 133.10 / 302.37 / 169.27 Q90 / Q95 / Q99: 492.94 / 564.70 / 682.29



Force Richtlinie (kN) - Statistics Summary:

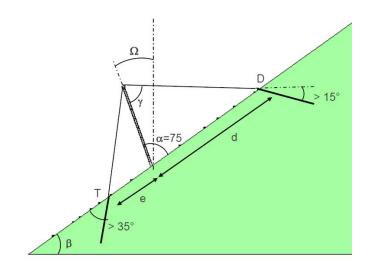
Parameter: Force Richtlinie (kN)

Min / Max: 102.86 / 2180.26 Nr Mean / Median: 937.23 / 842.64 His Std Dev: 381.45 Q1 / Q3 / IQR: 671.22 / 1116.99 / 445.77 Q90 / Q95 / Q99: 1558.98 / 1698.68 / 1919.77

Nr of data values: 3547 Histogram bin size: 56.15

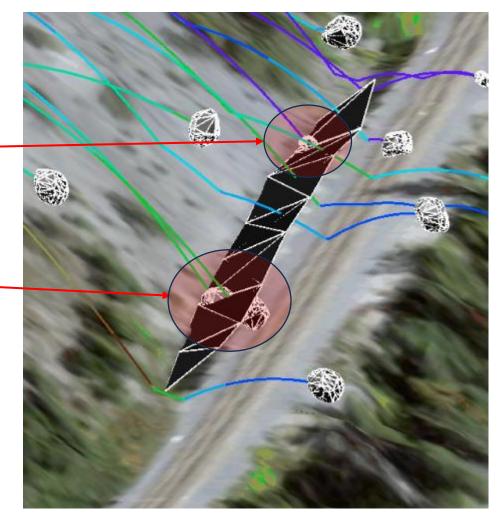
Rockfall Net

Remarks:

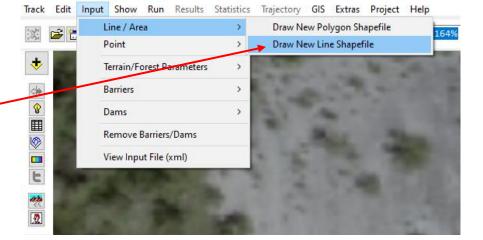

- We do not model nets as real nets, but as "thin walls", as rigid obstacles.
- Like galleries, these "thin walls" are modeled as convex hulls (point cloud).
- That's why a separate net is created from support to support (Stütze).
- "Nets" can be created interactively in RAMMS (by drawing lines) or created from existing polyline shapefiles.

Rockfall Nets – Support Angle

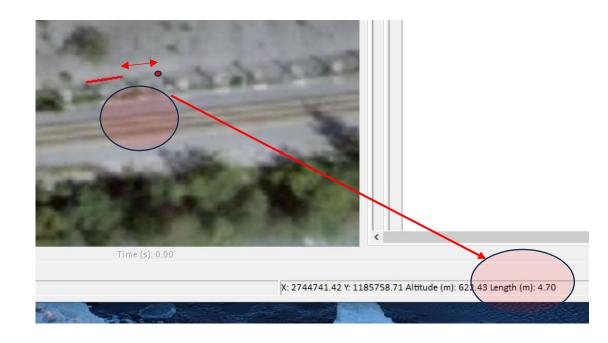
The angle (α) between the support and the terrain can be defined according to this sketch from Geobrugg.

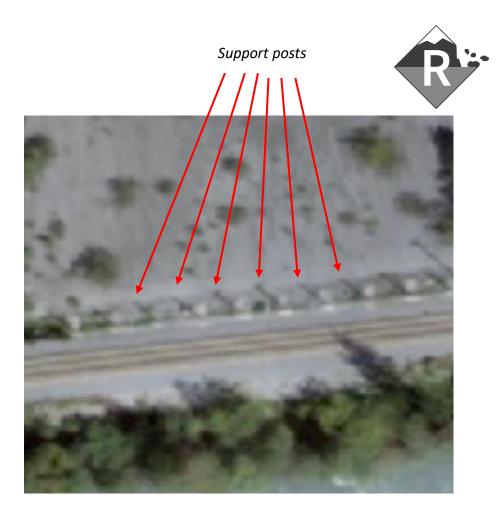

lpha = 90 °

Rockfall Nets – Energy Absorption Capacity


For each net, a maximum kinetic energy absorption capacity (1'000 kJ in the example on the right) can be defined. If the kinetic energy of the rock is lower than this limit, the rock – is stopped.

If this limit value is exceeded by the rock, the net has no influence on the rock's trajectory.


- Draw line shapefile at location of rockfall net.
- Click at positions of support posts.



Rockfall Net - Example

• While drawing the line shapefile, RAMMS indicates the distance from the mouse pointer to the last click.

	Add polylines ×
Rockfall Net - Example	Add more polylines? Ja Nein
 Finish drawing line shapefile with right mouse click. 	RAMMS Barrier (Net) Object ×
 Draw more lines if needed within the same shapefile. 	Create barrier (net) object from line snaperlie?
 Give a meaningful name. 	With the second
Click Yes to create net object.	Enter barrier height (m)
• Enter barrier (net) height in (m).	OK Cancel OK Cancel Enter angle between terrain and post (°)
 Enter angle between terrain and posts. 	Default angle = 75°
Now you can define an energy absorption capacity for every single net (one net	Image: White Provide Addition and the provided HTML and the provided HT
between two posts).	Set energy absorption capacity (in kJ) 2000 OK Cancel

Rockfall Net - Example

- The net objects are then visualized in RAMMS.
- Remove all barrier objects with «Input → Remove Barriers/Dams»

